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Abstract

Measurements and calculations of Coulomb drag between two low density, closely spaced, two-dimensional electron

systems are reported. The experimentally measured drag exceeds that calculated in the random phase approximation by a

significant, and density dependent, factor. Studies of the dependence of the measured drag on the difference in density between

the two layers clearly demonstrate that previously ignored q ¼ 2kF scattering processes can be very important to the drag at low

densities and small layer separations. q 2002 Elsevier Science Ltd. All rights reserved.
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Interlayer Coulomb interactions between electrons in

spatially separated two-dimensional electron systems

(2DES) can lead to the condensation of exotic bilayer

collective phases which do not occur in single layer

systems.1 A dramatic example of this occurs when the

total number of electrons in the bilayer system equals the

number of states in the lowest spin-resolved Landau level

created by a perpendicular magnetic field. If the separation

between the layers is small enough, intra- and interlayer

Coulomb interactions can combine to produce a spon-

taneous interlayer phase coherent state in which there is

complete quantum uncertainty as to which layer any given

electron is in. This unusual state has been predicted to

possess a number of remarkable properties including

counter-flow superfluidity and Josephson-like interlayer

tunneling. Recent experiments [2–4] have strongly sup-

ported these predictions.

In spite of the key role played by interlayer electron–

electron interactions in the stabilization of bilayer con-

densed phases, there have been very few quantitative

measurements of their strength. One relatively new

technique [5,6] for making such measurements consists of

recording the ‘drag’ voltage VD which develops in one

electron layer in response to a current flow I confined solely

to the other layer. The resulting drag resistance RD ¼ VD=I is

directly proportional to the interlayer momentum relaxation

rate in the system. At low temperatures and with closely

spaced layers, direct interlayer Coulomb scattering domin-

ates this rate [5,7], but in general other processes, such as

virtual phonon exchange [8–11] and plasmon-enhanced

Coulomb scattering [12–14] can also contribute.

At temperatures T small compared to the Fermi

temperature TF the divergent phase space for forward

(q ¼ 0) and backward (q ¼ 2kF) Coulomb scattering in a

clean 2DES leads to lnðTÞ corrections to the usual T2

dependence of the inverse thermal quasi-particle lifetime

[15]. In drag, however, the situation is somewhat different.

Most importantly, the Fourier transformed bare interlayer

Coulomb interaction is exponentially sensitive to the

spacing d between the layers: VðqÞ , e2qd=q: This effec-

tively suppresses scattering processes with momentum

transfers in excess of q , 1=d: Thus, if kFd q 1 backward

scattering q ¼ 2kF processes are unimportant. In this case
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the drag is dominated by small angle events and one expects

[5,7] RD , T2: This situation was appropriate in most early

Coulomb drag experiments [5,6,13]. In this case the lnðTÞ

dependence is absent because the momentum relaxation rate

is determined by the electron–electron scattering cross-

section weighted by 1 2 cos u , q2; where u is the

scattering angle. This factor vanishes rapidly at small q to

suppress the low angle phase space divergence.

Backward scattering processes can become important in

drag at low carrier densities and for closely spaced layers

since then kFd may be of order or even less than unity. In this

case a T2 lnðTÞ temperature dependence of the drag

resistance is expected at low T. Although definitive

identification of such logarithmic corrections is difficult,

we nonetheless report here strong evidence for q ¼ 2kF

Coulomb drag scattering processes in low density bilayer

systems. This evidence is obtained not from the temperature

dependence of the drag, but rather from its sensitivity to the

different densities in the two 2D layers.

The drag experiments reported here were performed on

bilayer 2DESs in GaAs/AlGaAs heterostructures. These

samples contain two 18 nm GaAs quantum wells separated

by a 10 nm Al0:9Ga0:1As barrier layer. This double well

structure is sandwiched between thick Al0:3Ga0:7As layers

which contain Si d-doping layers positioned about 220 nm

from the GaAs quantum wells. At low temperatures each

quantum well contains a 2DES of nominal density 5:2 £

1010 cm22 and mobility 1 £ 106 cm2=V s: Standard photo-

lithographic techniques were used to pattern a mesa, 40 mm

wide by 400 mm long, on the sample. Diffused In ohmic

contacts were placed at the ends of arms which extend

outward from this bar-shaped central mesa. A selective

depletion scheme allows each of these contacts to be

connected to the central region through either 2D layer

separately [16]. Metal gate electrodes on both sides of the

thinned heterostructure sample provide control over the

electron densities N1 and N2 of each 2D layer. Drag

measurements were performed by driving a current,

typically 10 nA at 13 Hz, down the bar through one 2D

layer while the drag voltage which develops in the other

layer is recorded. Considerable care was exercised in order

to eliminate spurious contributions to the drag signal arising

from the finite tunneling resistance (. 100 MVÞ and

capacitance (, 140 pF) between the layers. No effect on

the drag resistance was found when the role of drive and

drag layers were interchanged.

Fig. 1 shows the measured drag resistivity rD vs.

temperature at six different balanced (i.e. N1 ¼ N2 ; N0)

densities in the two 2D layers: N0 ¼ 1:7; 2.3, 3.1, 3.8, 4.7,

and 5:2 £ 1010 cm22: As expected, the drag resistance

increases with temperature and is larger at lower density.

The dashed line in the figure represents an unweighted least-

squares fit of the N0 ¼ 3:1 £ 1010 cm22 drag data to a

simple quadratic temperature dependence: rD ¼ AT2: The

fitted coefficient A exceeds the simplest theoretical estimate

of Coulomb drag by a factor of 5.9 at this density. This

estimate is based upon a model [5,7] which assumes two

ideally thin 2D layers separated by the present sample’s

center-to-center spacing of d ¼ 28 nm; low temperatures

(T ! TF), and a predominance of small-angle scattering

(kFd q 1). The model also treats screening of the interlayer

Coulomb interaction in the random phase approximation

(RPA) under the assumption qTFd q 1; with qTF the

Thomas–Fermi screening wavevector. We find that this

model underestimates the drag at all densities studied and

that the shortfall increases from about a factor of 2 at N0 ¼

8:8 £ 1010 cm22 to a factor of 10 at N0 ¼ 1:7 £ 1010 cm22:

The discrepancy between theory and experiment in the

magnitude of the drag is substantial but not unusual. Similar

discrepancies have been reported in electron–electron [5],

electron–hole [6], and low density hole–hole [17] samples.

Although phonon exchange can contribute to the drag

between 2D electron systems [8–11], it is unlikely to be

Fig. 1. Drag resistivity vs. temperature for six different densities.

Densities are in units of 1010 cm22. Dashed line is a least-squares fit

of the N0 ¼ 3.1 £ 1010 cm22 data to rD ¼ AT 2.

Fig. 2. Drag resistivity vs. density at three temperatures: T ¼ 4, 2,

and 1 K. Solid lines are proportional to N0
24; dashed line

proportional to N0
23.
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very important here. Experiments in which the phonon

contribution was deemed to be comparable to the Coulomb

scattering component show a much smaller drag resistance

than we report here [8,11]. Detailed calculations support this

conclusion [10]. Furthermore, the phonon contribution has

been traditionally identified via the peak it produces in

rD=T
2 vs. T. This peak, which occurs when the mean thermal

phonon wavevector is comparable to 2kF; is not observable

in the data presented here.

Another possible source of the enhanced drag which we

observe are higher order many-body effects not captured by

an RPA treatment of screening. Such effects generally

become more important at low density, but there have been

few quantitative estimates of their importance in Coulomb

drag [18]. To investigate this further we show in Fig. 2 a

log–log plot of the drag resistivity rD vs. density N0 at three

fixed temperatures: T ¼ 1; 2, and 4 K. The straight solid

lines, while merely guides to the eye, represent a N24
0

dependence. In contrast, the straight dashed line shows the

N23
0 dependence expected from the simple model described

above [5,7]. It is apparent that our experimental results are

much better approximated by the quartic density

dependence.

It is also clear from Fig. 1 that the drag data are not well

fit by the T2 temperature dependence of the simplest

theoretical model. Indeed, we find that an excellent fit to the

N0 ¼ 3:1 £ 1010 cm22 data is provided by rD ¼ AT2 �

lnðT =T0Þ with A ¼ 20:411 V=A and T0 ¼ 1160 K: We

emphasize, however, that other fitting functions also work

fairly well (e.g. rD ¼ BT1:8) and that we are not proposing

any specific analytic form.

We now turn to the dependence of Coulomb drag on

antisymmetric changes in the density of the two layers:

N1 ¼ N0 þ DN=2 and N2 ¼ N0 2 DN=2: Such changes are

readily imposed by applying a small dc bias voltage between

the two 2D layers.2 Fig. 3 shows the effect of such density

imbalances on the drag in our samples. Data at two different

average densities N0 and two temperatures are shown. As

the figure makes clear, very different behavior is observed at

low and high temperatures. At high T the drag is found to

increase, roughly quadratically, with DN: In contrast, low

temperatures produce the opposite result: the drag falls,

again roughly quadratically, with DN: We find a smooth

transition between the two regimes and a well-defined

temperature Tc at which the drag is roughly independent of

DN for small DN: The inset to the figure suggests an

approximately linear dependence of the cross-over tem-

perature Tc on the average layer density N0: In terms of

Fermi temperatures, we find that Tc=TF < 0:12 roughly

defines the cross-over temperature for this sample.

We propose that the results shown in Fig. 3 strongly

suggest that q ¼ 2kF electron–electron scattering processes

are important to the Coulomb drag in the present sample. To

see this, we begin by noting that in the simple theoretical

model presented earlier for comparative purposes, drag

increases with DN: This is a result of the fact that the drag

resistivity in that model is proportional to ðN1N2Þ
23=2: For

small DN; the model leads to DrD=rD ¼ þ3ðDN=N0Þ
2=8: But

the validity of this model depends, in part, upon the

assumption that kFd q 1 and the resultant restriction to

small angle scattering processes. For the present sample,

however, kFd ranges from about 0.9 to 1.6 for the densities

used. These values are sufficiently small that 2kF scatterings

cannot be ignored, especially in view of the large phase

space for such events. Furthermore, back-scattering pro-

cesses offer a natural way to understand the imbalance

dependence of the drag at low temperatures. For drag it is

the product of the phase space availability in each layer

which matters. If the two 2D systems have the same density,

their Fermi surfaces have the same diameter and the phase

divergences at q ¼ 2kF reinforce one another. When a

density imbalance DN is imposed, the Fermi surfaces no

longer overlap and the joint phase space product is

diminished, dramatically so at low temperature, and this

causes the drag to decrease.

At higher temperatures the phase space singularities are

washed out. Owing to the q2 weighting of the scattering

cross-section, the effect of this thermal smearing is

particularly important for large angle q ¼ 2kF processes.

Indeed, the relative importance of backward scattering

events declines at high temperatures and the mean scattering

angle diminishes. For these reasons, it seems plausible that

the drag might increase with density imbalance DN in a way

Fig. 3. Sensitivity of drag to antisymmetric density changes DN in

the two 2D layers. Left panels: Average density N0 ¼ 3:7 £ 1010

cm22: Right panels: N0 ¼ 5:2 £ 1010 cm22: For each density, data

from two temperatures is shown. Inset: Density dependence of the

cross-over temperature Tc:

2 An interlayer bias voltage shifts charge between the layers

owing to the interlayer capacitance. This effect is easily calibrated

by observing the magneto-oscillations of the resistivity in each layer

as the bias is applied.
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similar to that which occurs under the assumptions of the

small-angle scattering theory discussed above. In order to

make this qualitative argument for a change in sign of the

DN dependence of drag more compelling, we have

performed detailed numerical calculations of the drag

using the theoretical framework originally employed by

Gramila et al. [5] and Jauho and Smith [7]. Although our

calculations follow the same Boltzmann equation approach3

as in these earlier works, we have applied them here to the

significantly different regime of sample parameters (layer

separation and density) appropriate to the present

experiments.

Fig. 4 shows typical results of our calculations. In the

main panel the drag at a density of N0 ¼ 3:7 £ 1010 cm22 is

shown. These results include the effect of the finite thickness

of the 2D systems4 and incorporate screening at the RPA

level. No attempt was made to include phonon or plasmon-

related contributions to the drag. As expected, the

magnitude of the calculated drag falls short of the

experimental results at the same density by a significant

factor (< 5). Nonetheless, as the insets demonstrate, the

calculations do reproduce the change in sign of the

dependence of drag on antisymmetric density changes:

N1 ¼ N0 þ DN=2 and N2 ¼ N0 2 DN=2: In common with

the experiment, at low temperatures rD falls roughly

quadratically with DN while at high temperatures it rises.

The calculated cross-over temperature Tc is about 6.3 K; this

is about a factor of 4 higher than the experimental value at

the same density. It is quite clear from the calculations that

the drag at low temperatures contains a strong component

from Coulomb back-scattering processes sharply peaked

around q ¼ 2kF: At high temperatures this component is

reduced and a broad distribution of smaller scattering angles

dominates the drag. This is clearly demonstrated in Fig. 5

where the drag ‘intensity’ hðqÞ is plotted vs. momentum

transfer q. (The net drag, rD; is obtained by integrating hðqÞ

over all q.) Thus, these calculations strongly support the

qualitative argument given above and demonstrate that q ¼

2kF backward scattering processes can be very important at

low temperatures in samples with low electron densities and

small layer separations. These processes are directly

detectable via the unusual dependence of the drag on

antisymmetric density changes in the double layer 2D

system.

In conclusion, we have measured Coulomb drag in low

density 2D electron systems with small layer separations.

Our results show that the drag is substantially larger than

theoretical results based on RPA screening of the interlayer

Coulomb interaction. We find the level of disagreement to

grow steadily worse as the density is reduced. At low

temperatures our experimental data and numerical calcu-

lations clearly demonstrate that previously ignored large

angle q ¼ 2kF scattering processes can be quite important in

Coulomb drag.
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