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Evidence of super!uidity in double layer 2D electron systems
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Abstract

When two parallel two-dimensional electron gases are su1ciently close together, interlayer Coulomb interactions are of
comparable importance to intralayer ones. If the total number of electrons in the bilayer system equals the number of states in
the lowest spin-resolved Landau level produced by a large perpendicular magnetic 4eld, an exotic many-body state develops.
This state exhibits a variety of remarkable properties including Josephson-like interlayer tunneling and precise quantization
of the frictional drag between the layers. These 4ndings lend strong support to the notion that this quantum coherent state is
an example of a new kind of super!uid, one in which the underlying bosons are excitons comprised of electrons in one layer
bound to holes in the other.
? 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

A new form of super!uidity was predicted about 10 years
ago in theoretical studies of double layer two-dimensional
electron systems (2DES) [1]. Although there are a number
of equivalent ways to describe this new e.ect, it may be
viewed as arising from a Bose condensation of excitons con-
sisting electrons in one layer bound to holes in the other [2].
From this perspective, the system is very similar to those
excitonic condensates which were predicted much earlier
but have yet to be convincingly demonstrated in the exper-
iments (for an early example, see Ref. [3]). In the present
case, however, no valence band holes are involved; the ex-
citons are formed entirely within the conduction band of a
semiconductor heterostructure.

This new collective phenomenon occurs in the presence
of a large magnetic 4eld B perpendicular to the 2D planes.
The 4eld quantizes the single-electron kinetic energy spec-
trum into a ladder of discrete, yet highly degenerate, Lan-
dau energy levels. At high enough 4eld only the lowest

∗ Corresponding author. Fax: +1-626-683-9060.
E-mail address: jpe@caltech.edu (J.P. Eisenstein).

such level is occupied with electrons and a large energy gap
to the next Landau level (LL) exists. Under these circum-
stances, Coulomb interactions between electrons cannot be
treated perturbatively and numerous possibilities for exotic
strongly correlated many-body states result. The fractional
quantized Hall liquids, which exist in both single and dou-
ble layer 2D systems, are the best known, but by no means
only, examples.

The collective state to be discussed here does indeed ex-
hibit a quantized Hall e.ect (QHE); its Hall resistance �xy
is precisely h=e2. In common with all other QHE states, the
longitudinal resistance �xx of the present system, which re-
!ects energy dissipation, is exponentially small at low tem-
peratures. We emphasize, however, that this is not what is
meant by super!uidity in the present context. As we shall
discuss, an excitonic quantized Hall state is believed to ex-
hibit a unique super!uid mode which is dissipationless (in
linear response) even at 4nite temperature. More impor-
tantly, this collective state possesses a condensate with a
macroscopic phase variable 	 in exact analogy to super-
!uid 4He and conventional superconductors. Ordinary QHE
states do not possess such a condensate or quantum phase.
This paper will review, super4cially, our recent experiments
which strongly suggest that this new form of super!uidity
has, in fact, been observed.
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2. The QHE in bilayer electron systems

In its simplest form, the fractional quantized Hall e.ect
(FQHE), occurs when the density of electrons in the system,
N , is a rational fraction � = p=q of the degeneracy eB=h of
the lowest spin-resolved LL (for a review of quantized Hall
phenomena in single and double layer systems, see Ref. [4]).
In a single layer system the FQHE is only observed at certain
4lling fractions �=p=q and then only with q an odd integer.
The exceptions to this rule are the 5

2 and
7
2 states which occur

in the 4rst excited Landau Level. At these special 4llings,
interactions between electrons lead to the condensation of a
remarkable quantum !uid ground state with an energy gap to
charged excitations. The lowest lying such excitations carry
a precise fraction of an electron’s charge. FQHE states are
observed at �= 1

3 ;
2
5 ;

2
3 , etc., but none has ever been reported

at �= 1
2 , i.e. at half-4lling of the lowest LL. The half-4lled

case is interesting in its own right [4], but the system does
not possess the key energy gap needed for Hall quantization.

In a double layer 2DES there are new possibilities ow-
ing to the presence of both intra- and interlayer Coulomb
interactions [4]. The most interesting case studied so far is
that in which the individual layers are each at 4lling factor
� = 1

2 . If the layers are su1ciently close together the sys-
tem does possess an energy gap and does exhibit a QHE.
In this situation it is more appropriate to consider the to-
tal 4lling factor �tot = 1

2 + 1
2 = 1 rather than the individual

4lling factors. Discovered nearly 10 years ago [5], it is by
now well established that this QHE state collapses when the
separation d between the layers is increased beyond a crit-
ical value. At large layer separation the two layers behave
independently and, consistent with the above discussion, no
QHE is expected.

The �tot = 1 bilayer QHE was suspected early on to be
quite unusual [1,6–8]. The reason for this is embodied in
the concept of spontaneous interlayer phase coherence. In
the ground state electrons in the system are no longer in one
layer or the other, but are instead in quantum mechanical
superpositions of individual layer eigenstates. This seems
reasonable since there is always some amount of tunneling
through the barrier layer which separates the two 2D layers.
In the presence of such tunneling one expects hybridization
of the individual layer states into symmetric and antisym-
metric linear combinations which are separated in energy
by a gap �SAS. The key point, however, is that at �tot = 1
this hybridization occurs even in the limit of zero tunnel-
ing: Coulomb interactions alone are su1cient, provided that
the layers are close enough together. Indeed, recent experi-
mental work has demonstrated the existence of the �tot = 1
QHE even when the single-particle tunneling gap �SAS is
more than 4ve orders of magnitude smaller than the mean
inter-electron Coulomb energy.

In the simplest situation, the electrons in the ground state
at �tot = 1 have a 50% probability of being found in either
layer. Naturally, if an electron were found to be at some lo-
cation in one layer, an immediate subsequent measurement

would 4nd no electron in the opposite layer at the same loca-
tion in the plane. Thus, the correlations built into the ground
state may be viewed as excitonic; electrons in one layer are
bound to holes in the other. Of course, one cannot tell in ad-
vance which layer the either particle is in. Furthermore, the
50
50 nature of the electronic states does not fully specify the
quantum state. The same probabilities will result from any
linear combination of the form | ↑ 〉+ei	| ↓ 〉, where the kets
| ↑ 〉 and | ↓ 〉 denote the two di.erent layer eigenstates and
	 is a phase. Strong exchange interactions between elec-
trons in the same (and di.erent) layers force the phase to be
the same for all electrons, at least in an ideally clean sys-
tem at zero temperature. This constitutes a spontaneously
broken symmetry which may be visualized via an attrac-
tive analogy with easy-plane ferromagnetism. The phase 	
is a macroscopic quantum variable, very analogous to that
in super!uid 4He or an s-wave superconductor.

There is a complicated family of elementary excitations
above the �tot = 1 ground state (See the chapter in Ref. [9]).
Vortices in the 	 4eld form one class. These objects, called
merons and anti-merons, carry electrical charge q =±e=2,
but usually exist in pairs of charge zero or e. In addition, a
Goldstone collective mode in the system is associated with
the spontaneously broken symmetry. This mode, which is
crudely analogous to an interlayer plasma mode, is gapless
in the long wavelength limit. Finally, there are super!uid
!ows in the condensate itself. A uniform spatial gradient in
	 produces this new kind of super!ow, one which consists
of oppositely directed electrical currents in the two layers.
Within the excitonic condensate point of view, this corre-
sponds to a uniform !ow of excitons in one direction. The
experimental evidence which supports the existence of such
super!uid counter!ows is the subject of the remainder of
this paper.

3. Tunneling at �tot = 1

Direct measurements of tunneling between parallel 2D
ES were 4rst reported by Smoliner et al. [10]. At zero mag-
netic 4eld fairly sharp resonances are observed in the tun-
neling conductance dI=dV . These resonances occur when
energy levels in the two wells line up. The sharpness of the
resonances results from the twin constraints of energy and
in-plane momentum conservation which characterize tunnel-
ing in high mobility GaAs/AlGaAs heterostructures at low
temperatures.

When a large perpendicular magnetic 4eld is applied, the
tunneling current–voltage (I–V ) characteristics are altered
qualitatively. The narrow resonances seen at B = 0 are ab-
sent and the tunneling is spread out over a relatively wide
range in energy. This width re!ects the broadening of the LL
induced by electron–electron interactions. In addition, there
is also a region of strongly suppressed tunneling centered at
zero interlayer voltage [11,12]. This Coulomb pseudo-gap,
which is pinned to the Fermi levels of the two 2D systems,
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Fig. 1. Two tunneling I–V characteristics at �tot=1 and T=25 mK.
(Solid curve) E.ective layer separation is small enough to stabilize
excitonic QHE phase and Josephson-like tunneling results. (Dashed
curve) Strongly suppressed tunnel current near-zero bias that is
characteristic of widely separated, and thus weakly coupled, layers.

demonstrates that electrons cannot be injected (or extracted)
from a clean 2D ES at high magnetic 4elds at low energies.
This suppression e.ect is quite generic, it does not depend
upon whether either 2D system is in a gapped quantized Hall
state or a gapless compressible state like �=1

2 . The important
point is that tunneling is essentially instantaneous. An elec-
tron attempting to tunnel in must force its way into an “in-
terstitial” location in the strongly correlated N -particle !uid.
This costs an energy of order the mean Coulomb energy
between electrons. A similar energetic penalty accompanies
the rapid extraction of an electron. Even though low-energy
N + 1 particle states may exist (as they do at � = 1

2 ), tun-
neling cannot access them on short time scales. As a conse-
quence, electrons with less than the mean Coulomb energy
simply cannot tunnel at low temperatures.

Recent experiments have shown that the above argument
fails qualitatively when the e.ective separation between the
two layers is reduced below a critical value. Instead of a sup-
pression of the tunneling at low energy, a dramatic enhance-
ment is observed [13]. This enhancement is very sharply
resonant in energy, typically only occuring within a few �V
of V = 0. Very crudely speaking, the Coulombic penalties
associated with the injection and extraction processes as-
sociated with tunneling are cancelled by the excitonic at-
traction in the 4nal state. Fig. 1 illustrates the stark change
in the I–V tunneling characteristics which occurs when the
phase boundary separating the large separation, no QHE
phase from the small separation, interlayer phase coherent
excitonic QHE phase is crossed. The data in the 4gure were
obtained from a single sample: the e.ective layer separation
is adjusted by symmetrically changing the density of the
two 2D ESs and adjusting the magnetic 4eld accordingly to
maintain �tot = 1.

The solid trace in Fig. 1 is reminiscent of the DC Joseph-
son e.ect in a superconductor tunnel junction. We stress,

however, that so far no clear Josephson e.ect has been de-
tected in the �tot = 1 case. The jump in the tunnel current
near-zero bias occurs over a 4nite, if small, region of volt-
age. This voltage width falls with temperature, saturating
below about 40 mK, but it is not yet clear whether this sat-
uration is an intrinsic or extrinsic e.ect.

The resonant enhancement of tunneling at �tot = 1 is a
direct indicator of the existence of the predicted linearly
dispersing Goldstone mode in the system. Indeed, measure-
ments of the tunneling in the presence of a small in-plane
magnetic 4eld (added to the large perpendicular 4eld), have
veri4ed the predicted linear dispersion of this mode [14].
More intriguingly, the enhanced zero bias tunneling indi-
rectly suggests that the novel super!uidity of the �=1 state
does indeed exist. When an electron tunnels it creates a tran-
sient charge buildup in one layer and a charge de4cit in the
other layer. To relax these defects, current must !ow away
from the tunneling site in one layer and toward it in the other
layer. This constitutes counter!ow, the very transport mode
which is super!uid at � = 1. So, unlike the situation with
tunneling between uncorrelated 2D layers, it is very easy in
the present �=1 case to relax the charge defects created by
tunneling.

4. Coulomb drag

Direct generation and detection of super!uid counter!ows
at �tot = 1 is possible, but di1cult. As an intermediate step
we have performed Coulomb drag experiments in which
a current is driven through just one of the layers, while
voltage drops in the other layer are recorded [15]. This novel
technique provides direct access to the interlayer electron–
electron scattering rates in the system.

In the presence of a perpendicular magnetic 4eld, there
are both longitudinal and transverse, or Hall, drag voltages.
Until the present experiments, however, Hall drag had not
been observed. An oversimpli4ed, yet instructive, explana-
tion for this is that since no current is allowed to !ow in the
drag layer there can be no net Lorentz force and therefore
no voltage build-up transverse to the current in the other
layer. As we now show, this argument fails in the �tot = 1
state with its strong interlayer correlations.

Fig. 2 shows the longitudinal and Hall components of
Coulomb drag in a sample supporting the �tot = 1 excitonic
QHE state. The drag voltages are converted into resistances
by dividing by the current !owing in the drive layer. The
dotted curve is the conventional longitudinal resistance of
the sample; as expected it becomes very small in the region
of the �tot = 1 QHE. The dashed curve is the longitudinal
drag resistance, and it too becomes very small around the
�tot = 1 QHE. This vanishing of the longitudinal drag in a
QHE state is not surprising since there is an energy gap to
charged excitations. More interesting, however, is the behav-
ior of the Hall drag. Instead of being zero, or at least small,
near �tot = 1 it rises up and becomes quite large. Careful
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Fig. 2. Quantization of Hall drag at �tot = 1. (Solid trace) Hall
drag resistance at T = 25 mK. (Dashed trace) Longitudinal drag
resistance. Dotted trace: Conventional longitudinal resistance.

measurements have shown that the Hall drag is accurately
quantized at �xy;D = h=e2. This is remarkable: No current
is !owing in the drag layer and yet it exhibits a quantized
drag voltage transverse to a current !owing in the opposite
layer! This seemingly unphysical result was in fact predicted
[8,16]. Its existence is due to the strong interlayer Coulomb
correlations in the system.

The quantization of Hall drag might not seem so strange
when one remembers that electrons in the system are co-
herently spread between both layers. This suggests that a
electrical currents cannot be restricted to one layer alone,
as a drag experiment requires. Careful examination, how-
ever, demonstrates that the net current !owing in the drag
layer is indeed very close to zero. This apparent paradox is
resolved by allowing for counter!ow super!uidity. In addi-
tion to a symmetric transport current !owing equally in the
two layers, a excitonic supercurrent develops. In the drive
layer these two currents add to give the imposed current;

in the drag layer they subtract to give zero. Only the sym-
metric current produces a Hall resistance, and it is neces-
sarily quantized at h=e2. Thus, quantized Hall drag o.ers a
second strong indication that the predicted excitonic super-
!uidity of the �tot = 1 state does indeed exist.
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