UNIVERSITY OF CALIFORNIA, SANTA BARBARA

Department of Physics

Physics 110A Prof. M.S. Witherell December 9, 1991

FINAL

SHOW YOUR WORK AS CLEARLY AS POSSIBLE

The exam is closed book and notes, but you may use any information you have brought with you on one side of a $8\frac{1}{2}'' \times 11''$ sheet of paper. Do not spend too much time on one problem. Be sure to give answers in terms of given quantities.

Good Work 1

Course A+

1. A sphere of radius a contains charge of constant density:

$$\rho = \rho_0$$
 $\rho = 0$

- a) Find ϕ everywhere.
- 15
- b) Calculate the electrical energy stored, using $U_e = \frac{1}{2} \int \rho \phi d\tau$.
- c) Calculate the electrical energy stored, using $U_e = \frac{1}{2} \int \epsilon_0 E^2 d\tau$.

a)
$$\Gamma > \alpha$$

$$\phi = \frac{Qm}{4\pi\epsilon_0 \Gamma} = \frac{\rho_0 a^3}{3\epsilon_0 \Gamma}$$

$$Qm = \frac{4}{3}\pi a^3 \rho_0$$

$$\rho_0 \Gamma$$

$$\begin{array}{lll}
Q_{in} &= \frac{4}{3}\pi a^{3}Q_{8} \\
\hline
\Gamma < \alpha \\
\dot{E} &= \frac{Q_{in}}{4\pi\epsilon_{8}\Gamma^{2}} \quad Q_{in} &= \frac{4}{3}\pi r^{3}P_{0} \quad \phi(\alpha) &= \frac{P_{0}a^{2}}{3\epsilon_{8}} \\
\tilde{E} &= \frac{Q_{in}}{4\pi\epsilon_{8}\Gamma^{2}} \quad \varphi(\alpha) &= \frac{P_{0}(\Gamma)}{3\epsilon_{8}} \quad \varphi(\alpha) &= \frac{P_{0}(\Gamma)}{3\epsilon_{8}} \\
\tilde{E} &= \frac{Q_{in}}{4\pi\epsilon_{8}\Gamma^{2}} \quad \varphi(\alpha) &= \frac{P_{0}(\Gamma)}{3\epsilon_{8}} \quad \varphi(\alpha) &= \frac{P_{0}(\Gamma)}{3\epsilon_{8}} \\
\end{array}$$

$$= \sqrt{6(r)} = \frac{P_0}{6\epsilon_0} \left(a^2 - r^2\right) + \frac{P_0 a^2}{3\epsilon_0}$$

$$\phi(r) = \int_{-\infty}^{\infty} \frac{1}{4\pi\epsilon_{0}} r^{2} dr + \phi(\alpha) = \int_{-\infty}^{\infty} \frac{1}{3} r^{2} r^{2} dr = \int_{-\infty}^{\infty} \frac{1}{6\epsilon_{0}} \left(\frac{\alpha^{2} - r^{2}}{6\epsilon_{0}}\right)^{2} dr = \int_{-\infty}^{\infty} \frac{1}{6\epsilon_{0}} dr = \int_{-\infty}^{\infty} \frac{1}{6\epsilon_{0}} dr = \int_{-\infty}^{\infty} \frac{1}{6\epsilon_{0}} dr = \int_{-\infty}^{\infty}$$

5 b)
$$U_e = \frac{1}{2} \int_{0}^{2} \rho dt = \frac{1}{2} \int_{0}^{2} \rho \int_{0}^{2} \int_{0}^{2} \left(\frac{e^{2}}{6\epsilon_{0}}(a^{2}-r^{2}) + \frac{e^{2}}{3\epsilon_{0}}\right) r^{2} dr deox \theta dd$$

$$= \frac{4\pi\rho_{0}^{2}}{2\cdot6\epsilon_{0}} \int_{0}^{2} \left(\frac{a^{2}-r^{2}}{2}\right) r^{2} dr + \frac{4\pi\rho_{0}^{2}}{6\epsilon_{0}} \int_{0}^{2} \frac{a^{2}r^{3}}{3} \int_{0}^{2} - \frac{r^{5}}{5} \int_{0}^{2} \frac{4\pi\rho_{0}^{2}a^{3}}{6\epsilon_{0}} r^{2} dr + \frac{4\pi\rho_{0}^{2}a^{2}a^{3}}{6\epsilon_{0}} \int_{0}^{2} \frac{a^{2}r^{3}}{3} \int_{0}^{2} - \frac{r^{5}}{5} \int_{0}^{2} \frac{4\pi\rho_{0}^{2}a^{2}a^{3}}{6\epsilon_{0}} r^{2} dr deox \theta dd$$

$$= \frac{4\pi\rho_{0}^{2}}{2\cdot6\epsilon_{0}} \int_{0}^{2} \frac{a^{5}-a^{5}}{6\epsilon_{0}} + \frac{4\pi\rho_{0}^{2}a^{5}}{6\epsilon_{0}} \int_{0}^{2} \frac{a^{2}r^{3}}{3} \int_{0}^{2} - \frac{r^{5}}{5} \int_{0}^{2} \frac{4\pi\rho_{0}^{2}a^{2}a^{3}}{6\epsilon_{0}} r^{2} dr deox \theta dd$$

$$= \frac{4\pi\rho_{0}^{2}}{2\cdot6\epsilon_{0}} \int_{0}^{2} \frac{a^{5}-a^{5}}{3} + \frac{4\pi\rho_{0}^{2}a^{5}}{6\epsilon_{0}} \int_{0}^{2} \frac{a^{2}r^{3}}{3} \int_{0}^{2} - \frac{r^{5}}{5} \int_{0}^{2} \frac{4\pi\rho_{0}^{2}a^{2}a^{3}}{6\epsilon_{0}} r^{2} dr deox \theta dd$$

$$= \frac{4\pi\rho_{0}^{2}}{2\cdot6\epsilon_{0}} \int_{0}^{2} \frac{a^{5}-a^{5}}{3} + \frac{4\pi\rho_{0}^{2}a^{5}}{6\epsilon_{0}} \int_{0}^{2} \frac{a^{2}r^{3}}{3} \int_{0}^{2} - \frac{r^{5}}{5} \int_{0}^{2} \frac{4\pi\rho_{0}^{2}a^{2}}{3} \int_{0}^{2} - \frac{r^{5}}{5} \int_{0}^{2} \frac{4\pi\rho_{0}^{2}a^{2}}{6\epsilon_{0}} \int_{0}^{2} \frac{a^{2}r^{3}}{3} \int_{0}^{2} - \frac{r^{5}}{5} \int_{0}^{2} \frac{4\pi\rho_{0}^{2}a^{2}}{3} \int_{0}^{2} - \frac{r^{5}}{5} \int_{0}^{2} \frac$$

$$r>\alpha \stackrel{?}{E} = \frac{P_0 \alpha^3}{34_0 r^2}$$

$$=\frac{1}{2} \left\{ \frac{2\pi}{3} \right\} \left\{ \frac{2\pi}{3} \right\}^{2} r^{2} dr dcos\theta d\beta + \frac{1}{2} \left\{ \frac{2\pi}{3} \right\}^{2} \left\{ \frac{P \cdot \alpha^{3}}{3 \cdot 6} \right\}^{2} r^{2} dr dcos\theta d\beta$$

$$=\frac{2\pi R_{0}\rho_{0}^{2}}{968^{2}}\left(\frac{9}{r^{4}dr}+\frac{2\pi R_{0}\rho_{0}^{2}\alpha^{6}}{968^{2}}\right)\frac{1}{r^{2}dr}$$

$$r^2 - \frac{1}{r} = \frac{1}{\alpha}$$

$$= \frac{2778^{2}a^{5}}{456} + \frac{5.2778^{2}a^{5}}{5.96} = \frac{12}{45} \frac{12}{6.9} = \frac{12}{45} \frac{12}{6.9} = \frac{12}{45} \frac{12}{6.9} = \frac{12}{45} \frac{12}{6.9} = \frac$$

- 2. A coaxial cable consists of two conductors, one with outer radius a and the second with inner radius b > a, outer radius c. The gap between the conductors $(a < \rho < b)$ is filled with a dielectric with dielectric constant κ_e . The inner conductor carries linear charge density λ , the outer carries density $-\lambda$.
 - a) What is \overrightarrow{E} between the conductors?
 - b) What is the capacitance per unit length?
 - c) What is the volume bound charge density in the dielectric (ρ_b) ?
 - d) What is the surface bound charge density, σ_b , on the outer surface of the dielectric?
 - e) What is the energy stored per unit length?

3 a)
$$\vec{D} = \frac{\lambda}{2\pi\rho} \hat{\rho} \implies \vec{E} = \frac{\vec{D}}{K_e \epsilon_o} = \frac{1}{2\pi\epsilon_o \rho} \hat{\kappa}_e \hat{\rho}$$

c)
$$\vec{P} = (K_e-1) + \vec{E} = \frac{(K_e-1)}{K_e} + \hat{\vec{P}}$$

$$3^{d}) \sqrt{g} = \overrightarrow{R} \cdot \hat{n} = \frac{(\kappa_c - 1)}{\kappa_e} \frac{\lambda}{2nb}$$

$$=\frac{\lambda^{2}}{8\pi^{2}\epsilon_{6}\kappa_{e}}\int_{0}^{\infty}\frac{1}{\rho^{2}}\frac{d\vec{r}}{\rho^{2}}\int_{0}^{\infty}\frac{1}{\rho^{2}}\frac{d\vec{r}}{\rho^{2}}\int_{0}^{\infty}\frac{1}{\rho^{2}}\frac{$$

- 3. A point charge q is located between two parallel, grounded conductivity planes which are separated by distance d. The charge is a distance z < d from one plane.
 - a) Find the location of the infinite number of image charges.
 - b) Express the force on q by an infinite series.

11

$$=\frac{3^{2}}{4\pi\epsilon_{6}}\left[\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon_{6}}\left[\frac{(-1)^{2}}{4\pi\epsilon_{6}}\right]^{2}+\frac{5}{4\pi\epsilon$$

- 4. A circular ring of radius a lies in the x y plane with origin at the center, with constant linear charge density $q/2\pi \mathbf{e}$.
 - a) Find the potential $\phi(z)$ on the z-axis.
- b) Find the potential $\phi(r,\theta)$ (r>a) expressed as a series in $P_{\ell}(\cos\theta)$. Give the coefficients for $\ell \leq 2$.
 - c) If we place a negative charge at the origin, is it in stable equilibrium?
 - d) Calculate the quadrupole moment Q^a of this charge distribution. $(Q^a = Q^a_{zz})$ for an axially symmetric distribution.)

Work Space

$$= \frac{9}{2\pi a} \int \frac{1}{r^2(3\cos^2\theta - 1)} ds \sin\theta d\theta$$

$$= \frac{9}{2\pi a} \int \frac{1}{r^2(3\cos^2\theta - 1)} ds \sin\theta d\theta$$

$$=\frac{9}{2\pi a}\int_{8}^{2\pi}-q^{3}dy=-\frac{9}{9}q^{2}$$

with origin ato, o:

· 3 12 cos2 0 · 12 = 12 (3 cos + 7)

- 5. A point dipole \vec{p} is place in the center of a spherical cavity of radius a in a dielectric with dielectric constant κ_e .
 - a) Find the potential inside and outside the cavity.
 - b) Use this result to find the potential for the case of a dipole inside a grounded conducting sphere of radius a.

will coll & the direction in which & is.

Ke B.C.'s
$$r \to 0$$
 $\phi \to \frac{p \cos \theta}{4\pi \epsilon_0 r^2}$ $r \to 0$ at $r = a$ $D_{in} = D_{2n}$ and ϕ is continuous

$$\frac{B_{i}}{F_{i}} = \frac{1}{F_{i}} \frac{\cos \theta}{\sin \theta} + A_{i} \cos \theta$$

$$D_{n_{i}} = \frac{1}{F_{i}} \frac{\cos \theta}{\sin \theta} + A_{i} \cos \theta$$

$$D_{n_{i}} = -\frac{1}{F_{i}} \frac{\cos \theta}{\sin \theta} + A_{i} \cos \theta$$

$$D_{n_{i}} = -\frac{1}{F_{i}} \frac{\cos \theta}{\sin \theta} + A_{i} \cos \theta$$

$$D_{n_{i}} = -\frac{1}{F_{i}} \frac{\cos \theta}{\sin \theta} + A_{i} \cos \theta$$

$$D_{n_{i}} = -\frac{1}{F_{i}} \frac{\cos \theta}{\sin \theta} + A_{i} \cos \theta$$

$$\int_{\Omega_{\epsilon}} -\mathcal{E}_{0} \left(-\frac{2\rho \cos \theta}{4\pi \epsilon_{0} r^{3}} + A_{1} \cos \theta \right)$$

$$\phi_i(r=a) = \phi_o(r=a)$$

$$\phi_{i}(r=a) = \phi_{o}(r=a)$$

$$\frac{P\cos\theta}{4\pi\epsilon_{o}a^{2}} + \sum_{i} A_{e} a^{i} P_{e}(\cos\theta) = \sum_{i} \frac{B_{e}}{\alpha^{e+1}} P_{e}(\cos\theta)$$

$$\frac{P\cos\theta}{2} + A_{e}a\cos\theta = B_{e}a + C\cos\theta$$

$$\frac{P\cos\theta}{2} + A_{e}a\cos\theta = B_{e}a + C\cos\theta$$

Work Space

$$A_{1} + \frac{2k_{e}\alpha^{3}}{F^{3}}A_{1} = \frac{2p}{4\pi\epsilon_{0}r^{3}} - \frac{7pk_{e}}{4\pi\epsilon_{0}r^{3}} \quad \text{at } r = \alpha$$

$$A_{1} \left(1 + \frac{2k_{e}\alpha^{3}}{F^{3}}\right) = \frac{2p}{4\pi\epsilon_{0}r^{3}} \left(1 - K_{e}\right) \Rightarrow A_{1} = \frac{2p}{4\pi\epsilon_{0}\alpha^{2}} \frac{(1 - K_{e})}{(1 + 2k_{e})^{2}}$$

$$A_{1} = \frac{2p}{4\pi\epsilon_{0}\alpha^{3}} \frac{(1 - K_{e})}{(1 + 2K_{e})}$$

$$\phi_{i} = \frac{P\cos\theta}{4\pi\epsilon_{0}r^{2}} + \frac{(1-\kappa_{e})}{(1+2\kappa_{e})} \frac{2\rho\cos\theta}{a^{3}4\pi\epsilon_{0}r^{2}} \Gamma$$

$$\phi_{o} = \frac{\rho\cos\theta}{4\pi\epsilon_{0}r^{2}} + \frac{(1-\kappa_{e})}{(1+2\kappa_{e})} \frac{2\rho\cos\theta}{4\pi\epsilon_{0}r^{2}} = \frac{3}{1+2\kappa_{e}} \frac{\rho\cos\theta}{r} \Gamma$$

$$if four rounded by a conductor then $\kappa_{e} = \infty$ and:
$$\phi_{i} = \frac{P\cos\theta}{4\pi\epsilon_{0}r^{2}} - \frac{1}{2} \left(\frac{2\rho\cos\theta}{a^{3}4\pi\epsilon_{0}r}\right) = \left(1 - \frac{r^{3}}{a^{3}}\right) \frac{\rho\cos\theta}{4\pi\epsilon_{0}r^{2}} \Gamma$$

$$\phi_{o} = \frac{\rho\cos\theta}{4\pi\epsilon_{0}r^{2}} - \frac{1}{2} \left(\frac{2\rho\cos\theta}{4\pi\epsilon_{0}r}\right) = \left(1 - \frac{r^{3}}{a^{3}}\right) \frac{\rho\cos\theta}{4\pi\epsilon_{0}r^{2}} \Gamma$$

$$\phi_{o} = \frac{\rho\cos\theta}{4\pi\epsilon_{0}r^{2}} - \frac{1}{2} \left(\frac{2\rho\cos\theta}{4\pi\epsilon_{0}r^{2}}\right) = \left(1 - \frac{r^{3}}{a^{3}}\right) \frac{\rho\cos\theta}{4\pi\epsilon_{0}r^{2}} \Gamma$$$$

- 6. A conducting sphere of radius a, carrying a total charge Q, is placed in a previously uniform electric field $\vec{E} = [\frac{Q}{12\pi a^2 E_0}] \hat{z}$
 - a) Find ϕ everywhere outside the sphere.
 - b) Find the surface charge density σ everywhere on the sphere.

\$ -> - Q rcos Q AMA atr=a d=0

9= 2 [Aerl+Ber-(e+2)] Pe(cost) All All Mary

0= E (Aea + Bea (2017) Pe (0000) => Be= -Ae (2017)

burn = E A (-l - a(2l +2) Pecas &

ZAErePicoso = - Q + coso + ymen

 $A_{2} = -\frac{Q}{12\pi a^{2}E_{0}}$

$$B_{1} = Q_{1} = Q_{2} = Q_{2} = Q_{3} = Q_{3$$

(0)=- (0) r (0) + (0) 1 eos 0

Est (ofr=a). n = = E(r=a) / - 3 = = Q 12 HORS.

Work Space

$$A_{2} = -\frac{Q}{12\pi Q^{2} \epsilon_{0}}$$

$$\sqrt{1} = C_0 E_{\Gamma}(r=\alpha) = \frac{Q\cos\theta}{12\pi a^2} - \frac{Q\cos\theta}{6\pi a^2} - \frac{Q}{4\pi a^2}$$

$$=\frac{6}{\pi a^{2}}\left(\frac{\cos \theta}{6}-\frac{1}{4}\right)=\frac{6}{6\pi a^{2}}\left(\cos \theta-\frac{3}{2}\right)$$

a) Case 1:
$$\vec{p} = p\hat{z}$$

b) Case 2:
$$\vec{p} = p\hat{x}$$

c) Case 3:
$$\overrightarrow{p} = -p\hat{x}$$

$$\vec{F} = \vec{p} \times \vec{E} = \frac{\vec{p} \times \vec{k}}{2\pi \xi_0} \vec{y}$$

$$C) = \frac{P \lambda}{2\pi \epsilon_0 d^2} \hat{\chi}$$

$$7 = 0 C$$

$$\frac{\lambda}{2\pi\epsilon_{sp}}$$

$$(\cos \phi \hat{x} + \sin \phi \hat{y})$$

$$\sin \alpha p = x$$

$$\phi = 0$$